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Abstract

A general asymptotic solution can be obtained for a class of partial differential equations with small
nonlinearities whose dominant linear part involves an nth order, n ¼ 2; 3; . . . ; time derivative. The method
used is an extension of the Krylov–Bogoliubov–Mitropolskii (KBM) method. The formulation as well as
the determination of the solution is quite easy. Many authors have extended the KBM method to
investigate some physical and mechanical oscillating systems, modelled by either second-order hyperbolic
type partial differential equations or certain partial differential equations with third-order time derivative.
They mainly extended the method to investigate individual problems. On the contrary, the proposed
solution covers various types of nonlinear problems modelled by partial differential equations whose linear
part involves second-, third-, etc. order time derivative. Substituting n ¼ 2; 3 into the general formula, it can
be shown that the formula readily becomes to those extended by several authors. The method is illustrated
with a physical problem whose linear part involves a third-order time derivative.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The Krylov–Bogoliubov–Mitropolskii (KBM) method [1,2] was extended and used by
Mitropolskii and Moseenkov [3], Fodchuk [4] and Bojadziev and Lardner [5] for solving
second-order hyperbolic type partial differential equations with small nonlinearities. The method
see front matter r 2004 Elsevier Ltd. All rights reserved.
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was developed earlier by Krylov and Bogoliubov [1] for obtaining periodic solutions of second-
order ordinary differential equations. Then the method was amplified and justified by Bogoliubov
and Mitropolskii [2] and extended by Popov [6] to damped oscillatory processes. Bojadziev and
Lardner [7,8] further extended the method to hyperbolic type partial differential equations with
time delay and damping. Osiniskii [9,10] investigated partial differential equations whose linear
parts involve third-order time derivative. However, Osiniskii did not utilize the KBM method
properly. Lardner and Bojadziev [11] observed that Osiniskii’s solution gives incorrect results in
certain cases. They [11] then provided a solution to the problem considered by Osiniskii [9,10].
Lardner and Bojadziev [11] developed the method using the concept of ‘mode coupling’
introduced by Devy and Ames [12], who first successfully investigated nonlinear partial
differential equations with third-order time derivatives by perturbation technique. They [12]
used a two-variable expansion procedure [13] instead of the KBM method. It is clear that a lot of
formulae exist to tackle various types of nonlinear problems modelled by partial differential
equations. These formulae are mainly derived depending on the order of the differential equation,
the damping force, or the nature of the coefficients (either constant coefficients or slowly varying
coefficients with time). However, generalizing all these situations a formula can be found. It
should be noted that Shamsul [14–16] has presented such general formula for the nonlinear
ordinary differential equations. In one [14], a general solution of an nth order ordinary differential
equation (with constant coefficients) is given and later this method is extended and applied to
similar nonlinear equations in which the coefficients slowly vary with time [15]. In both
papers[14,15], the general solutions are considered in terms of some unusual variables rather than
amplitudes and phases. Therefore, these solutions need suitable variable transformations to bring
them to the formal forms. Recently this problem is solved [16]. Both formulae presented in Refs.
[14,15] have been transformed to formal forms which are used directly to determine first-order
solutions of second, third, fourth order, etc. equations. Thus the method presented in Ref. [16] is
generalized and straightforward. The aim of the present paper is to extend that method to partial
differential equations whose linear part contains an nth order time derivative. The general formula
is identical to some existing formulae [3–5,7,8] when n ¼ 2: But the formula reduces to an
equivalent form of Lardner and Bojadziev’s [11] formula when n ¼ 3: It should be noted that the
reduced formula (the concern of this paper) is much simpler than that of Ref. [11].
2. Method

Considering the following nonlinear partial differential equation:

ðDn þ c1D
n�1 þ � � � þ cn�1DÞu � ðd2D

n�2 þ d3D
n�3 þ � � � þ dnÞuxx ¼ �F ðx; u; ux; ut; . . .Þ; (1)

where D � q=qt; subscripts denote partial differentiation with respect to x and t, cj; j ¼

1; 2; . . . ; n � 1; dj; j ¼ 2; . . . ; n � 2 are constants, � is a small parameter and F is a given nonlinear
function. In addition to Eq. (1), uðx; tÞ is required to satisfy a pair of homogeneous boundary
conditions involving u and its derivatives at x ¼ 0 and l:

BjðuÞ ¼ bj1uð0; tÞ þ bj2uxð0; tÞ þ bj3uðl; tÞ þ bj4uxðl; tÞ; j ¼ 1; 2; (2)

where bj;r; r ¼ 1; 2; 3; 4 are eight constants.



ARTICLE IN PRESS

M.S. Alam et al. / Journal of Sound and Vibration 285 (2005) 173–185 175
Setting � ¼ 0 in Eq. (1), the generating equation which possesses the separable solutions is

u½s	ðx; t; 0Þ ¼ FsðxÞ
Xn

j¼1

a
ðsÞ
j;0 e

lðsÞ
j

t; s ¼ 1; 2; . . . ; (3)

where a
ðsÞ
j;0; j ¼ 1; 2; . . . ; n are arbitrary constants, FsðxÞ satisfies the ordinary differential equation

F00
s ðxÞ þ m2sFsðxÞ ¼ 0; BjðFsÞ ¼ 0; j ¼ 1; 2 (4)

and for each values of ms; l
ðsÞ
j ; j ¼ 1; 2; . . . ; n satisfy the algebraic equation

pn þ c1p
n�1 þ ðc2 þ m2s d2Þp

n�2 þ � � � þ m2s dn � P
n

j¼1
ðp � lðsÞj Þ ¼ 0: (5)

The boundary conditions on u holding at x ¼ 0 and l translate into corresponding boundary
conditions on FsðxÞ; which combined with Eq. (4), enable the allowed set of eigenfunctions fFsðxÞg

and eigenvalues fm2s g to be determined. Provided the boundary conditions satisfy the usual
conditions for self-adjointness, the set of eigenfunctions form a complete and orthogonal set. By
suitable normalization, one gets

Z l

0

FrðxÞFsðxÞdx ¼ drs; (6)

where drs is the Kronecker symbol. In order to solve an initial value problem for the generating
equation, one would seek the solution in the form of a sum of separable solutions as

uðx; t; 0Þ ¼
X1
s¼1

FsðxÞ
Xn

j¼1

a
ðsÞ
j;0e

lðsÞ
j

t

 !
: (7)

By virtue of the completeness of the set of eigenfunctions, such solution can meet the initial
conditions that u; ut; utt; . . . are prescribed at t ¼ 0; and the orthogonality condition Eq. (6)
enables simple expression for the sets of coefficients fa

ðsÞ
j;0g:

Considering the nonlinear equation (1), and supposing that one wishes to find the single mode
solution u½s	ðx; t; eÞ corresponding to the sth mode equation (3) of the generating equation. Such
the solution can be defined formally by the requirement that ju½s	ðx; t; �Þ � u½s	ðx; t; 0Þj ! 0 as
e ! 0; and correspond to single mode solutions of Eq. (1) previously investigated [3–5,7–11]
(when n ¼ 2 or 3). Following the KBM method [1,2], as generalized for an nth order ordinary
differential equation by Shamsul [13] and as developed for partial differential equation by
Mitropolskii and Moseenkov [3], an asymptotic solution of Eq. (1) (which corresponds to ms) can
be chosen in the form

uðx; t; �Þ ¼ uð0Þða
ðsÞ
1 ; aðsÞ2 ; . . . ; aðsÞ

n ;x; tÞ þ �uð1Þða
ðsÞ
1 ; aðsÞ2 ; . . . ; aðsÞn ; x; tÞ þ �2 . . . ; (8)
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where uð0Þ ¼ FsðxÞ
Pn

j¼1a
ðsÞ
j ðtÞel

ðsÞ
j

t; and each a
ðsÞ
j satisfies a first-order differential equation

_aðsÞ
j ¼ eAjða

ðsÞ
1 ; aðsÞ

2 ; . . . ; aðsÞ
n ; tÞ þ e2 . . . : (9)

Differentiating uðx; t; eÞ n-times with respect to x and t, substituting the derivatives of u and u in
Eq. (1), it becomes

ðDn þ c1D
n�1 þ � � � þ cn�1DÞuð0Þ � ðd2D

n�2 þ d3D
n�3 þ � � � þ dnÞu

ð0Þ
xx

þ �½ðDn þ c1D
n�1 þ � � � þ cn�1DÞuð1Þ � ðd2D

n�2 þ d3D
n�3 þ � � � þ dnÞu

ð1Þ
xx 	 þ �2 � � � ¼ �F : ð10Þ

It is customary in KBM method that uð1Þ is expanded in a series of FrðxÞ; r ¼ 1; 2; . . . (see Refs.
[3–5,7–11] for details), as

uð1Þ ¼
X1
r0¼1

U ðr0Þða
ðsÞ
1 ; aðsÞ2 ; . . . ; aðsÞn ; tÞFr0 ðxÞ: (11)

Substituting the values of uð0Þ; uð1Þ from Eq. (11) into Eq. (10) and utilizing Eq. (4):

FsðD̄
n
þ c1D̄

n�1
þ ðc2 þ m2s d2ÞD̄

n�2
� � � þ m2s dnÞ

Xn

j¼1

a
ðsÞ
j ðtÞel

ðsÞ

j
t

þ e
X1
r0¼1

Fr0 ðD̄
n
þ c1D̄

n�1
þ ðc2 þ m2r0d2ÞD̄

n�2
� � � þ m2r0dnÞU ðr0Þ þ e2 � � � ¼ eF ; ð12Þ

where D̄ � d=dt:
According to the characteristic Eq. (5), Eq. (12) can be written in a factorized form in D̄; as

Fs

Yn

k¼1

ðD̄ � lðsÞj Þ
Xn

j¼1

a
ðsÞ
j ðtÞel

ðsÞ
j

t
þ �
X1
r0¼1

Fr0

Yn

k¼1

ðD̄ � lðr
0Þ

j ÞU ðr0Þ

 !
þ �2 � � � ¼ �F : (13)

Now multiplying both sides of Eq. (13) by FrðxÞ; integrating from 0 to l and making use of
Eq. (6):

drs

Yn

k¼1

ðD̄ � lðsÞj Þ
Xn

j¼1

a
ðsÞ
j ðtÞel

ðsÞ
j

t
þ e
Yn

k¼1

ðD̄ � lðrÞj ÞU ðrÞ þ e2 � � � ¼ eF ðrÞða
ðsÞ
1 ; aðsÞ

2 ; . . . ; aðsÞ
n ; tÞ; (14)

where F ðrÞ ¼
R l

0 F FrðxÞdx: The coefficient with drs of Eq. (14) can be rewritten asXn

j¼1

Yn

k¼1

ðD̄ � lðsÞk Þða
ðsÞ
j ðtÞel

ðsÞ

j
t
Þ

¼
Xn

j¼1

Yn

k¼1;kaj

ðD̄ � lðsÞk ÞððD̄ � lðsÞj Þða
ðsÞ
j ðtÞel

ðsÞ
j

t
ÞÞ: ð15Þ

Using Eq. (9), one obtains

d

dt
� lðsÞj

� 	
ða

ðsÞ
j ðtÞel

ðsÞ

j
t
Þ ¼ eAje

lðsÞ
j

t
þ Oðe2Þ: (16)
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Therefore,

Yn

k¼1; kaj

d

dt
� lðsÞk

� 	
d

dt
� lðsÞj

� 	
ða

ðsÞ
j ðtÞel

ðsÞ
j

t
Þ

¼ e
Yn

k¼1; kaj

d

dt
� lðsÞk

� 	
ðAje

lðsÞ
j

t
Þ þ Oðe2Þ

¼ e
Yn

k¼1; kaj

q
qt

� lðsÞk

� 	
ðAje

lðsÞ
j

t
Þ þ Oðe2Þ ð17Þ

On the other hand, the term with e of Eq. (14) becomes

Yn

k¼1

d

dt
� lðrÞk

� 	
U ðrÞ ¼

Yn

k¼1

q
qt

� lðrÞk

� 	
U ðrÞ þ OðeÞ: (18)

Substituting the results of Eqs. (17) and (18) into Eq. (14) and comparing the coefficients of e; one
obtains

drs

Xn

j¼1

Yn

k¼1; kaj

ðD � lðsÞk Þ ðel
ðsÞ

j
tAjÞ

 ! !
þ
Yn

j¼1

ðD � lðrÞj ÞU ðrÞ ¼ F ðrÞða
ðsÞ
1 ; aðsÞ

2 ; . . . ; aðsÞ
n ; tÞ: (19)

According to the assumptions followed in Ref. [14], it is easy to determine Aj; j ¼ 1; 2; . . . ; n and
U ðrÞ; r ¼ 1; 2; . . . from Eq. (19). To do this it is restricted that U ðsÞ excludes fundamental terms which
are included in the series expansion equation (8) at order e0 [3–5,7,8,11,12]. But the formula Eq. (19) is
not in a usual form and the determination of the solution is not straightforward. First, Aj; j ¼

1; 2; . . . ; n and U ðrÞ; r ¼ 1; 2; . . . are to be determined from Eq. (19). Then all these functional values
are substituted into Eqs. (8) and (9) and some suitable variable transformations are used to obtain the
formal solution from Eqs. (8) and (9). However, under the same variable transformations, Eq. (19)
can be brought to a usual form, i.e., in terms of amplitude and phase variables. For both even and odd
values of n, the general formula is useful to determine all oscillatory modes. When n is an odd number,
there exists a nonoscillatory mode (purely exponential type, see Ref. [11]) which can be found by
solving an additional equation (see Ref. [16] for details). First, considering the situation when n is an
even number, i.e., n ¼ 2l; l ¼ 1; 2; . . . : In this case Eq. (19) can be written as

drs

Xn=2
l¼1

Yn

k¼1; ka2l�1; 2l

ððD � lðsÞ2l Þ ðe
lðsÞ
2l�1

tA2l�1Þ þ ðD � lðsÞ2l�1Þ ðe
lðsÞ
2l

tA2lÞÞ

 !

þ
Yn

j¼1

ðD � lðrÞj ÞU ðrÞ ¼ F ðrÞða
ðsÞ
1 ; aðsÞ

2 ; . . . ; aðsÞn ; tÞ: ð20Þ

Now with change of variables a
ðsÞ
j ; j ¼ 1; 2; . . . ; n by a

ðsÞ
2l�1 ¼

1
2ale

ijl ; a
ðsÞ
2l ¼ 1

2ale
�ijl (al ; jl are,

respectively, amplitude and phase variables) together with substitutions lðsÞ2l�1 ¼ �ml þ iol ; l
ðsÞ
2l ¼
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�ml � iol ; A2l�1 ¼
1
2
ð ~Al � ial

~BlÞe
ijl ; A2l ¼

1
2
ð ~Al � ial

~BlÞe
�ijl ; Eq. (20) becomes

drs

Xn=2
l¼1

Yn

k¼1; ka2l�1; 2l

ðD � lðsÞj Þ ðe�ml tfðD ~Al � 2olal
~BlÞ cos cl � ð2ol

~Al þ alD ~BlÞ sin clgÞ

 !

þ
Yn

j¼1

ðD � lðrÞj ÞU ðrÞ ¼ F ðrÞða1; a2; . . . ; an=2;c1;c2; . . . ;cn=2; tÞ; cl ¼ ol t þ jl : ð21Þ

It can be shown that Eq. (21) is similar to Bojadziev and Lardner’s [8] formula which was derived
for obtaining the first-order solution of utt þ c1ut � d2uxx ¼ eF ðx; u; ux; utÞ: For n ¼ 2; Eq. (21)
readily becomes

drse
�m1tfcos c1ðD ~A1 � 2o1a1 ~B1Þ � sin c1ð2o1

~A1 þ a1D ~B1Þg

þ ðD2 þ 2m1D þ m21 þ o2
1ÞU

ðrÞ ¼ F ðrÞða1;c1; tÞ; c1 ¼ o1t þ j1: ð22Þ

It is obvious that Eq. (22) is in an equivalent form of Bojadziev and Lardner’s formula [8] (see the
article for details). Eq. (22) reduces to Bojadziev and Lardner’s [5] formula when m1 ! 0 or m1 ¼
OðeÞ: Therefore, when n ¼ 2 and m1 ¼ 0; Eq. (21) is identical to Bojadziev and Lardner’s [5]

formula. Bojadziev and Lardner’s [5,8] solved Eq. (22) for the unknown functions ~A1; ~B1 and U ðrÞ;

subject to the conditions that U ðsÞ excludes first harmonic terms, cos c1 and sin c1: Following this
assumption, one can solve Eq. (21) for all even values of n. When n is an odd number, Eq. (19) can
be written as

drs

Xðn�1Þ=2
l¼1

Yn

k¼1;ka2l�1;2l

ððD � lðsÞ2l Þðe
lðsÞ
2l�1

tA2l�1Þ þ ðD � lðsÞ2l�1Þðe
lðsÞ
2l

tA2lÞÞ

 !

þ
Yn�1
k¼1

ðD � lðsÞk Þðel
ðsÞ
n tAnÞ þ

Yn

j¼1

ðD � lðsÞj Þuð1Þ ¼ F ðrÞ: ð23Þ

Therefore, Eq. (21) is still valid when n is an odd number, but the functions ~Al ; ~Bl exist for
l ¼ 1; 2; . . . ; ðn � 1Þ=2; while the unknown function An would be determined from the additional
equation

Yn�1
k¼1

ðD � lðsÞk Þ ðel
ðsÞ
n tAnÞ ¼ all term of elnt of the expansion of F ðsÞ: (24)

Therefore, the determination of first order solution of Eq. (1) is clear whether n is an even or an
odd number. The method can be carried out to higher order approximations in a similar way.
However, owing to the rapidly growing algebraic complexity for the derivation of the formulae, the
solution is in general confined to a low order, usually the first [14–16].
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3. Example

3.1. Vibration of a viscoelastic rod in where a third-order time derivative is present

As an example of the above procedure, consider a nonlinear mechanical elastic system with
internal friction and relaxation, namely the longitudinal vibrations of a viscoelastic rod or
torsional vibrations of a cylinder. Let x be a coordinate along the rod and let uðx; tÞ; eðx; tÞ and
sðx; tÞ denote, respectively, the longitudinal displacement, axial strain and axial stress at time t

at the particle whose positional coordinate is x in the unstressed state of the rod. In the case
of torsional vibrations, e and s denote tangential strain and stress. The strain–displacement
relation is

e ¼ ux (25)

and the equation of motion is

rutt ¼ sx; (26)

where r is the density of the rod.
The constitutive equation of the material, proposed and used by Osiniski [9,10] is supposed to

be of the form (see also Refs. [11,12,17])

sþ bst þ b1s
3
t ¼ Ke þ K1e

3 þ Get þ G1e3t ; (27)

where the nonlinear terms are small compared to the linear ones. The terms with coefficients K

and K1 represent, respectively, the linear and nonlinear elasticity, the terms with coefficients G and
G1 correspond, respectively, to linear and nonlinear viscous damping, and the terms with
coefficients b and b1 reflect linear and nonlinear relaxation. In some particular cases it is
considered that G1 ¼ b1 ¼ 0 (see Refs. [9–11,17] for details). Now eliminating e and s from Eqs.
(25) to (27), the system takes the form of Eq. (1) as

uttt þ b�1utt � ðGb�1r�1uxxt þ Kb�1r�1uxxÞ ¼ 3K1b
�1r�1u2xuxx: (28)

Here n ¼ 3; c1 ¼ b�1; c2 ¼ 0; d2 ¼ Gb�1r�1; d3 ¼ Kb�1r�1 and e ¼ 3K1b
�1r�1; F ¼ u2xuxx:

Here j ¼ 1; 2; 3 and l1 ¼ 1 only. Let us consider lðsÞ1 ¼ �zs þ ios; l
ðsÞ
2 ¼ �zs � ios l

ðsÞ
3 ¼ �xs; a

ðsÞ
1 ¼

b; a
ðsÞ
3 ¼ a and cðsÞ

1 ¼ c; so that Eq. (21) becomes

drsððD þ xsÞ½e
�zstfðD ~A1 � 2osb ~B1Þ cos c� ð2os

~A1 þ bD ~B1Þ sin cg	

þ fðD þ xsÞ
2
þ o2

s gðA3e
�xstÞÞ þ ðD þ xrÞ½ðD þ xrÞ

2
þ o2

r 	U
ðrÞ ¼ F ðrÞðbe�zst cos cþ ae�xstÞ

3; ð29Þ

where F ðrÞ ¼
R l

0 F
02
s F

00
sFr dx: When r ¼ s; Eq. (29) can be separated into the three equations as

(subject to the conditions that U ðsÞ excludes the first harmonic terms and the terms of ae�xst)

ðD þ xsÞ½e
�zstf ðD ~A1 � 2osb ~B1Þ cos c� ð2os

~A1 þ bD ~B1Þ sin cg	

¼ F ðsÞð3
4
b3e�3zst þ 3ba2e�ðzsþ2xsÞtÞ cos c; ð30Þ

fðD þ xsÞ
2
þ o2

s gðA3e
�xstÞ ¼ F ðsÞð32b

2ae�ð2zsþxsÞt þ a3e�3xstÞ (31)
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and

ðD þ xsÞ½ðD þ xsÞ
2
þ o2

s 	U
ðsÞ ¼ F ðsÞð3

2
b2ae�ð2zsþxsÞt cos 2cþ 1

4
b3e�3zst cos 3cÞ: (32)

When ras; Eq. (29) becomes to a simple form

ðD þ xrÞ½ðD þ xrÞ
2
þ o2

r 	U
ðrÞ ¼ F ðrÞðbe�zst cos cþ ae�xstÞ

3: (33)

After integration once, Eq. (30) becomes

e�zstfcos cðD ~A1 � 2osb ~B1Þ � sin cð2os
~A1 þ bD ~B1Þg

¼ 3
4
F ðsÞb3e�3zst �

ðxs � 3zsÞ cos cþ os sin c

ðxs � 3zsÞ
2
þ o2

s

� 3F ðsÞa2be�ð2xsþzsÞt �
ðxs þ zsÞ cos c� os sin c

ðxs þ zsÞ
2
þ o2

s

: ð34Þ

Equating the coefficients cos c and sin c on both sides of Eq. (34), one obtains

e�zstðD ~A1 � 2osb ~B1Þ ¼
3
4
F ðsÞb3e�3zst �

ðxs � 3zsÞ

ðxs � 3zsÞ
2
þ o2

s

� 3F ðsÞa2be�ð2xsþzsÞt �
ðxs þ zsÞ

ðxs þ zsÞ
2
þ o2

s

;

�e�zstð2os
~A1 þ bD ~B1Þ ¼

3
4F

ðsÞb3e�3zst �
os

ðxs � 3zsÞ
2
þ o2

s

þ 3F ðsÞa2be�ð2xsþzsÞt �
os

ðxs þ zsÞ
2
þ o2

s

:

(35)

It is obvious that the solution of Eq. (35) takes the form

~A1 ¼ m2b
3e�2zst þ m1a

2be�2xst; ~B1 ¼ n2b
2e�2zst þ n1a

2e�2xst; ð36Þ

where the unknown coefficients m2; n2; m1; n1 satisfy the algebraic equations

� 2zsm2 � 2osn2 ¼
3
4

F ðsÞðxs � 3zsÞ

ðxs � 3zsÞ
2
þ o2

s

; 2osm2 � 2zsn2 ¼
3
4

F ðsÞos

ðxs � 3zsÞ
2
þ o2

s

;

� 2zsm1 � 2osn1 ¼
�3F ðsÞðxs þ zsÞ

ðxs þ zsÞ
2
þ o2

s

; 2osm1 � 2zsn1 ¼
�3F ðsÞos

ðxs þ zsÞ
2
þ o2

s

: ð37Þ

The solution of Eq. (37) is

m2 ¼
�3F ðsÞ½zsðxs � 3zsÞ þ o2

s 	

8ðz2s þ o2
s Þ½ðxs � 3zsÞ

2
þ o2

s 	
; n2 ¼

3F ðsÞosð�xs þ 4zsÞ

8ðz2s þ o2
s Þ½ðxs � 3zsÞ

2
þ o2

s 	
;

m1 ¼
3F ðsÞðx2s þ xszs � o2

s Þ

2ðx2s þ o2
s Þ½ðxs þ zsÞ

2
þ o2

s 	
; n1 ¼

3F ðsÞosð2xs þ zsÞ

2ðx2s þ o2
s Þ½ðxs þ zsÞ

2
þ o2

s 	
: ð38Þ

Eq. (31) can be solved easily. The solution becomes

A3 ¼ l2ab2e�2zt þ l1a
3e�2xt; (39)
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where

l2 ¼
3F ðsÞ

2½ðxs þ zsÞ
2
þ o2

s 	
; l1 ¼

F ðsÞ

ð3xs � zsÞ
2
þ o2

s

: (40)

Solving Eqs. (32) and (33), one obtains

U ðrÞ ¼ F ðrÞFrfb
3e�3ztððC

ðrÞ
1 cos cþ S

ðrÞ
1 sin cÞ þ ðC

ðrÞ
3 cos 3cþ S

ðrÞ
3 sin 3cÞÞ

þ 3b2ae�ð2zþxÞt � ðC
ðrÞ
0 þ ðC

ðrÞ
2 cos 2cþ S

ðrÞ
2 sin 2cÞÞ

þ 3ba2e�ðzþ2xÞtðC̄
ðrÞ

1 cos cþ S̄
ðrÞ

1 sin cÞ þ C̄
ðrÞ

0 a3e�3xtg ð41Þ

together with C
ðsÞ
1 ¼ D

ðsÞ
1 ¼ C̄

ðsÞ

1 ¼ D̄
ðsÞ

1 ¼ C
ðsÞ
0 ¼ C̄

ðsÞ

0 ¼ 0 and

C
ðrÞ
1 ¼

ðxr � 3zsÞðzr � 3zsÞ
2
þ ðxr � 3zsÞo2

r � ðxr þ 2zr � 9zsÞo2
s

½ðxr � 3zsÞ
2
þ o2

s 	½ðxr � 3zsÞ
2
þ ðor þ osÞ

2
	½ðxr � 3zsÞ

2
þ ðor � osÞ

2
	
;

S
ðrÞ
1 ¼

ððxr � 3zsÞð2xr þ zr � 9zsÞ þ o2
r � o2

s Þos

½ðxr � 3zsÞ
2
þ o2

s 	½ðxr � 3zsÞ
2
þ ðor þ osÞ

2
	½ðxr � 3zsÞ

2
þ ðor � osÞ

2
	
;

C
ðrÞ
3 ¼

ðxr � 3zsÞ ðzr � 3zsÞ
2
þ ðxr � 3zsÞo2

r � 9ðxr þ 2zr � 9zsÞo2
s

½ðxr � 3zsÞ
2
þ 9o2

s 	 ½ðzr � 3zsÞ
2
þ ðor þ 3osÞ

2
	 ½ðxr � 3zsÞ

2
þ ðor � 3osÞ

2
	
;

S
ðrÞ
3 ¼

3ððzr � 3zsÞ ð2xr þ zr � 9zsÞ þ o2
r � 9o2

s Þos

½ðxr � 3zsÞ
2
þ 9o2

s 	 ½ðzr � 3zsÞ
2
þ ðor þ 3osÞ

2
	 ½ðxr � 3zsÞ

2
þ ðor � 3osÞ

2
	
;

C̄
ðrÞ

1 ¼
ðxr � 2xs � zsÞ ðzr � 2xs � zsÞ

2
þ ðxr � 2xs � zsÞo2

r � ðxr þ 2zr � 6xs � 3zsÞo2
s

½ðxr � 2xs � zsÞ
2
þ o2

s 	 ½ðzr � 2xs � zsÞ
2
þ ðor þ osÞ

2
	 ½ðzr � 2xs � zsÞ

2
þ ðor � osÞ

2
	
;

S̄
ðrÞ

1 ¼
ððzr � 2xs � zsÞ ð2xr þ zr � 6xs � 3zsÞ þ o2

r � o2
s Þos

½ðxr � 2xs � zsÞ
2
þ o2

s 	 ½ðzr � 2xs � zsÞ
2
þ ðor þ osÞ

2
	 ½ðzr � 2xs � zsÞ

2
þ ðor � osÞ

2
	
;

C
ðrÞ
2 ¼

ðxr � xs � 2zsÞ ðzr � xs � 2zsÞ
2
þ ðxr � xs � 2zsÞo2

r � 4ðxr þ 2zr � 3xs � 6zsÞo2
s

½ðxr � xs � 2zsÞ
2
þ 4o2

s 	 ½ðzr � xs � 2zsÞ
2
þ ðor þ 2osÞ

2
	 ½ðzr � xs � zsÞ

2
þ ðor � 2osÞ

2
	
;

S
ðrÞ
2 ¼

2ððzr � xs � 2zsÞ ð2xr þ zr � 3xs � 6zsÞ þ o2
r � 4o2

s Þos

½ðxr � xs � 2zsÞ
2
þ 4o2

s 	 ½ðzr � xs � 2zsÞ
2
þ ðor þ 2osÞ

2
	 ½ðzr � xs � zsÞ

2
þ ðor � 2osÞ

2
	
;

C
ðrÞ
0 ¼

1

ðxr � xs � 2zsÞ ½ðzr � xs � 2zsÞ
2
þ o2

r 	
; C̄

ðrÞ

0 ¼
1

ðxr � 3zsÞ ½ðzr � 3zsÞ
2
þ o2

r 	
:

Thus the first-order approximate solution of Eq. (28) is

uðx; tÞ ¼ FsðxÞðbe
�zst cos cþ ae�xstÞ þ �

X
r¼1

U ðrÞ; (42)
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where a, b and c are solution of

_b ¼ eðm2b
3e�2zst þ m1a

2be�2xstÞ;

_c ¼ os þ eðn2b
2e�2zst þ n1a

2e�2xstÞ;

_a ¼ eðl2ab2e�2zst þ l1a
3e�2xstÞ; ð43Þ

and U ðrÞ is given by Eq. (41). In general, Eq. (43) is solved by a numerical technique [11,17].
Eq. (43) has an approximate solution when the damping force is significant. In this situation the
perturbation solution is fully independent of the numerical method. Bojadziev et al. [11,17] always
solved Eq. (43) by Runge–Kutta fourth-order procedure. Shamsul [14] solved Eq. (43) by
assuming that a and b are constants in the right-hand sides of Eq. (43).
4. Similar systems with varying coefficients

The method can be used for similar nonlinear problems with varying coefficients, namely

ðDn þ c1ðtÞDn�1 þ � � � þ cn�1ðtÞDÞu � ðd2ðtÞDn�2 þ � � � þ dnðtÞÞuxx ¼ eF ðt;x; u; ux; ut; . . .Þ; (44)

where t ¼ e t; cjðtÞ; djðtÞX0: The coefficients in Eq. (44) are slowly varying in that their time
derivatives are proportional to e [15,16,18].
Setting e ¼ 0; t ¼ t0 ¼Const. in Eq. (44), the unperturbed solution of this equation becomes

u½s	ðx; t; 0Þ ¼ FsðxÞ
Xn

j¼1

a
ðsÞ
j;0 e

lðsÞ
j
ðt0Þ t; s ¼ 1; 2; . . . ; (45)

where lðsÞj ðt0Þ; j ¼ 1; 2; . . . ; n are constant, but lðsÞj ðtÞ vary slowly with time when �a0:
An asymptotic solution of Eq. (44) can be chosen in the form

uðx; t; eÞ ¼ uð0Þða
ðsÞ
1 ; aðsÞ

2 ; . . . ; aðsÞ
n ; x; tÞ þ e uð1Þða

ðsÞ
1 ; aðsÞ

2 ; . . . ; aðsÞ
n ;x; tÞ þ Oðe2Þ; (46)

where uð0Þ ¼ FsðxÞ
Pn

j¼1a
ðsÞ
j ðtÞ; and a

ðsÞ
j satisfies a equation

_aðsÞ
j ¼ lðsÞj a

ðsÞ
j þ eAjða

ðsÞ
1 ; aðsÞ

2 ; . . . ; aðsÞ
n ; tÞ þ Oðe2Þ: (47)

Here the corresponding equation to Eq. (19) becomes (for an even value of n)

drs

Xn

j¼1

Yn

k¼1;kaj

ðO� lðsÞk ÞAj

 !
þ
Xn

j¼1

Xn

k¼1;kaj

Ykþn�3

r¼k

ðlðsÞ2l�1 � lðsÞr Þ

 !
lðsÞ

0

2l�1

 ! !

þ
Yn

j¼1

ðO� lðsÞj ÞU ðrÞ ¼ F ðrÞða
ðsÞ
1 ; aðsÞ

2 ; . . . ; aðsÞ
n ; tÞ; ð48Þ

where

O ¼
Xn

j¼1

lðsÞj a
ðsÞ
j

q

qa
ðsÞ
j

; lðsÞj

0
¼
dlðsÞj

dt
; j ¼ 1; 2; . . . ; n:
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By using transformation a
ðsÞ
2l�1 ¼

1
2
ble

icl ; a
ðsÞ
2l ¼ 1

2
ble

�icl together with substitutions lðsÞ2l�1 ¼

�mðsÞl þ ioðsÞ
l ; lðsÞ2l ¼ �mðsÞl � ioðsÞ

l ; A2l�1 ¼
1
2
ð ~Al þ i ~BlÞ; A2l ¼

1
2
ð ~Al � i ~BlÞ; Eq. (48) becomes

drs

Xn=2
l¼1

Yn

k¼1; ka2l�1;2l

ðO� lðsÞk Þ½cos clfðYþ mðsÞl Þ ~Al � ð2oðsÞ
l bl

~BlÞg � sin clð2o
ðsÞ
l

~Al þ blY ~BlÞ	

 !

þ drs

Xn=2
l¼1

ð�ðmðsÞl

0
P
ðsÞ
l þ oðsÞ

l

0
Q

ðsÞ
l Þ cos cl þ ðmðsÞl

0
P
ðsÞ
l � oðsÞ

l

0
Q

ðsÞ
l Þ sin clÞ

þ
Yn

j¼1

ðO� lðsÞj ÞU ðrÞ ¼ F ðrÞðb1; b2; . . . ; bn=2;c1;c2; . . . ;cn=2Þ; ð49Þ

where

P
ðsÞ
l þ iQ

ðsÞ
l ¼

Ykþn�3

r¼k

ðlðsÞ2l�1 � lðsÞr Þ

 !
lðsÞ

0

2l�1; P
ðsÞ
l � iQ

ðsÞ
l ¼

Ykþn�3

r¼k

ðlðsÞ2l � lðsÞr Þ

 !
lðsÞ2l

0

and Y ¼
Pn=2

j¼1mjbj
q
qbj

: From Eq. (49), it is possible to determine the unknown functions ~Al ; ~Bl

and U ðrÞ in a similar way as determined in Section 3. The method can be used when n is
an odd number. Eq. (49) is identical to Eq. (21) when the coefficients of Eq. (44) become
constants.
5. General discussion of the results

A general and straightforward formula Eq. (21) is found and used to determine the first
approximate solution of the partial differential equation Eq. (1). Eq. (19) can be used to find the
same result according to Ref. [14]. But the solution is determined in terms of the unusual variables
a
ðsÞ
j ; j ¼ 1; 2; . . . n: Under the variable transformation a

ðsÞ
2l�1 ¼

1
2
ale

ijl ; a
ðsÞ
2l ¼ 1

2
ale

�ijl ; l ¼ 1; 2; . . . n=2
or ðn � 1Þ=2; the solution is brought to the amplitude-phase form. Moreover, substituting n ¼

2; 3; . . . in Eq. (21), all the previous formulae (presented by several authors) can be found quickly.
On the contrary, a direct attempt to find such a general formula is too difficult. Though two step
calculations are needed to determine the formula Eq. (21), the process is very simple and easier
than the classical techniques [1–3] even if n ¼ 2:
In this paper, a single mode solution is dealt with. However, the method can be extended to a

general initial value problem in which the solution is considered as a sum of the modes of the form
Eq. (42). But it is a tremendously difficult task to determine such general solutions when nX3:
Sometimes, the lowest order solution of Eq. (1) of the following form:

uðx; tÞ ¼
X
N¼1

FNðxÞðbNe
�zN t cos cN þ aNe

�xN tÞ; (50)
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is investigated (see Ref. [11]). Here bN ; cN and aN satisfy the set of first-order differential
equations:

_bN ¼ e ~ANðbN ; aNÞ;

_cN ¼ oN þ ~BNðbN ; aNÞ;

_aN ¼ ~CNðbN ; aNÞ: ð51Þ

The method can be extended to similar nonlinear systems in which the coefficients slowly vary
with time, i.e., for Eq. (44). The general formula equation (49) is useful in this case. If the
coefficients become constant, Eq. (49) readily reduces to Eq. (21).
6. Conclusion

The KBM method [1,2,14–16] is extended and used to obtain asymptotic solutions of the
nonlinear partial differential equations whose linear part involves an nth order time derivative.
The method is a generalization of asymptotic method [1–3] and the formulae Eq. (21) and Eq. (49)
are useful in obtaining the first approximate solution of a partial differential equation with
constant and slowly varying coefficients. The formulation as well as the determination of the
solution is simpler than all previous formulae which were derived individually to tackle some
physical and mechanical problems modelled by the partial differential equation Eq. (1). For
different values of n as well as for various damping conditions, the formula is used arbitrarily.
Thus it is no longer necessary to treat the individual partial differential equations as well as
individual cases ( e.g., undamped, damped and strongly damped systems) separately.
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